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Abstract

This thesis focuses primarily on the design, development, and testing of novel meth-
ods for autonomous interception of intrusive UAVs using another UAV. An advanced
detection and tracking mechanism is implemented using light detection and range
(LIDAR) measurements from the interceptor UAV with respect to its agile flight
characteristics. After validation, the technique is augmented using the Interactive
Multiple Model (IMM) filter algorithm, which shows superior tracking performance
of highly maneuverable targets.

For the trajectory planning, various algorithms, including Proportional Navigation
(PN) and Nonlinear Model Predictive Control (NMPC), are implemented and com-
pared to a baseline method, navigation based on nonlinear optimization (NLOPT).
The PN method is adapted specifically for drone interceptions, and NMPC is utilized
with a simple objective to leverage the benefits of this type of control.

Through rigorous testing and comparison in simulations, PN and NMPC notably
outperforms the baseline algorithm, with NMPC showing exceptional performance
across all metrics. PN is also successfully tested against a human-piloted target in a
real-world scenario, highlighting the practical applicability and effectiveness of these
methods in tackling real-world UAV interception challenges. This marks a significant
milestone, validating the theoretical foundations of this research and also underlining
its practical value in addressing the growing issue of intrusive drones.

Keywords Autonomous Aerial Interception Systems, Estimation and Filtration,
Trajectory Planning
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Abstrakt

Tato diplomová práce se primárně soustřed́ı na návrh, vývoj a testováńı nových
metod pro autonomńı zachyceńı nekooperuj́ıćıch dron̊u pomoćı jiného dronu. Je
implementován pokročilý detekčńı a sledovaćı mechanismus, který využ́ıvá měřeńı
LIDAR (Light Detection and Ranging) z interceptoru s ohledem na jeho k agresivńı
létáńı. Tato metoda byla dále rozš́ı̌rena pomoćı algoritmu Interactive Multiple Model
(IMM) filtru, který prokázal vynikaj́ıćı schopnost sledovat rychle manévruj́ıćı ćıle.

Za účelem plánováńı odchytové trajektorie byly implementovány a porovnány r̊uzné
algoritmy, včetně Proportional Navigation (PN) a Nonlinear Model Predictive Con-
trol (NMPC), s výchoźı metodou, navigaćı založenou na nelineárńı optimalizaci
(NLOPT). Metoda PN, určená p̊uvodně pro ř́ızeńı naváděných raket, je specificky
adaptována pro zachyceńı dron̊u a NMPC je implementováno s jednoduchým ćılem
využ́ıt výhod tohoto typu ř́ızeńı.

V d̊ukladném testováńı a porovnáńı v simulaćıch, PN a NMPC ukázalo, že tyto
metody významně předč́ı výchoźı algoritmus, přičemž NMPC ukazuje nejlepš́ı
výsledky ve všech metrikách. PN je také úspěšně testována proti ćıli ř́ızeném lidským
pilotem v reálném nasazeńı, což zd̊urazňuje praktickou použitelnost a účinnost těchto
metod při řešeńı skutečných výzev během odchytu dronu. To představuje významný
milńık, který potvrzuje teoretické základy této práce a zároveň zdúrazňuje jejich
praktickou hodnotu při řešeńı rostoućıho problému nekooperuj́ıćıch dron̊u.

Kĺıčová slova Autonomńı Letecké Záchytné Systémy, Odhad a Filtrace, Plánováńı
Trajektorie
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Chapter 1

Introduction

Figure 1.1: The UAVin the image (Eagle One,) aims to become a fully autonomous interceptor
and is the main motivation for this work.

Over the past few years, there was tremendous progress in the development of multirotor
UAVs. Advances in computational hardware and affordability made UAVs more accessible and
capable than ever before. However, this progress has also introduced new challenges. As the
number and capabilities of drones on the market continue to grow, there has been an increase
in drone incidents, such as accidents, near-misses, and even intentional misuse. This leads to
a negative perception of drones by the public [25]. With rising concerns about general safety,
privacy, and misuse for criminal activities.

In December 2018, multiple drone sightings near London’s Gatwick Airport caused
significant disruption to air travel. The airport had to close its runway repeatedly over a
period of three days, resulting in the cancellation or diversion of approximately 1,000 flights
and affecting around 140,000 passengers. Despite extensive investigations, the perpetrators
were never identified1.

In August 2018, an alleged assassination attempt on the Venezuelan President Nicolás
Maduro occurred during a military parade in Caracas. Two drones carrying explosives det-
onated near the parade, causing injuries to several military personnel. This incident demon-
strated the potential for drones to be used in targeted attacks and raised concerns about their
misuse for terrorist activities2.

The number of such incidents is expected to increase as the field of drone technology

1http://en.wikipedia.org/w/index.php?title=Gatwick%20Airport%20drone%20incident&oldid=
1138255439

2http://en.wikipedia.org/w/index.php?title=2018%20Caracas%20drone%20attack&oldid=1144142399
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continues to advance, particularly with the development of more capable artificial intelligence
(AI) and autonomous systems. To address this challenge, it is important to have effective
methods for neutralizing rogue drones.

These methods can be divided into destructive and non-destructive approaches. De-
structive approaches include shooting down the drone or jamming its communication or GPS
signal, causing it to crash. Using firearms, specialized anti-drone projectiles, or anti-drone
defense systems, such as net guns or lasers, can physically damage or disable the drone. Jam-
ming its communication or GPS signal, making it difficult or impossible to distinguish the
intended signal from the jamming signal, can cause a loss of control and potentially a crash.
This method involves using electronic countermeasure devices designed to disrupt the signals
between the drone and its operator. However, these methods can pose safety risks to the
public and may not be suitable for all situations.

Speciffically trained birds of prey can be a more non-invasive method. Some countries,
such as the Netherlands, have experimented with training birds of prey, including eagles, to
capture drones in mid-air. Birds are trained to recognize drones as prey and snatch them out
of the sky, making the drones inoperable.

Finally, drones equipped with nets or other capture mechanisms can be deployed to
intercept and disable rogue drones. These drone-catching drones can physically capture the
target drone, entangle it in a net, or even use tethered systems to tow it to a safe location.

The Tokyo Metropolitan Police has used drones to catch drones as a countermeasure
against rogue drones. Police drones are equipped with a net that can be used to capture
unauthorized or suspicious drones that fly in restricted areas. When police detect a rogue
drone, they deploy the arial interception system to pursue it. Once the police drone is in
proximity to the rogue drone, it releases the net to entangle and capture the target. After
capturing the rogue drone, the police drone can safely transport it to a secure location on
the ground, minimizing the risk of injury or damage to property.This method is considered
non-destructive and safe, as it avoids causing harm to people or property during the process
of neutralizing the rogue drone. A drawback of this method lies in its reliance on manual
control by an operator, which places a significant burden on human resources and a limit on
the potential deployment environments.

These examples highlight the need to address the issue of rogue UAVs. Their increasing
accessibility presents escalating risks. This necessitates advanced, autonomous interception
systems that can neutralize threats while safeguarding people and property.

1.1 Related works

In this section, we conduct a thorough review of the existing literature, specifically
focusing on research that tackles sub-problems and challenges analogous to those outlined in
our study.

1.1.1 Detection and Tracking

Accurate, fast, and robust detection and tracking of intruder UAV is essential for suc-
cessful interception. Tracking in this work is based on the work presented in [4], which presents
a robust and accurate approach to detect flying objects with an emphasis on use with dy-
namic aerial interception of an agile target using a 3D LiDAR sensor. The approach uses a

CTU in Prague Department of Cybernetics
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novel 3D occupancy voxel mapping method for target detection and a cluster-based multiple
hypothesis tracker. The proposed method outperforms the state-of-the-art onboard detection
methods. The authors demonstrate the practical usability and performance of the system in
both simulated and real-world experiments, using the Eagle One3 platform (Fig. 1.1).

Another notable work [13] developed a relative localization system that operates without
the need for markers or specialized equipment. Images from the onboard camera are passed
to a Convolutional Neural Network (CNN) to detect nearby UAVs. This approach eliminated
the need for specialized markers on the UAVs, enabling the localization of non-cooperating
objects. The system is designed for real-time, onboard implementation on an UAVs platform,
facilitating relative stabilization of multiple UAVs in a formation or swarm-like behavior when
operating in a closed feedback loop with the UAVs’ control systems. The authors demonstrate
the viability and robustness of the proposed method through real-world experiments. The sys-
tem proved suitable for robotic tasks that require relative location on-line, such as swarming,
formation flight, or collision avoidance.

The work in [13] is a natural continuation of an approach presented in [16], where the
authors present a novel approach for the fast localization of non-cooperating drones using a
depth image from a stereo camera. The proposed algorithm is computationally efficient enough
to process images online on an UAV with limited resources, making it suitable for use in the
control feedback of an autonomous aerial intercepting system (AAIS). Through experiments,
the authors demonstrate that their proposed method is faster, more precise, and more robust
than a CNN-based method, with a longer detection range and better depth estimation. The
method also shows high reliability in ranges up to 20 meters.

One notable research effort in the field of autonomous drone interception was inspired by
the Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2020 [6]. The authors of
this article developed a novel approach for autonomously catching fast-flying objects using an
UAV. Their solution utilizes a 3D LiDAR sensor for target detection and predicts the target’s
trajectory to determine an optimal interception position. The interceptor UAV navigates into
the interception position to safely approach the target, with continuous adjustments made
based on the updated estimation and prediction of the target’s motion. The system successfully
caught the target object in a dedicated onboard net, earning the second place in Challenge 1
and the first place in the combined Grand Challenge of the MBZIRC 2020 competition. This
research demonstrates the potential for practical applications in drone interception.

Detection is not the only challenge during interception. Due to the maneuvering of
the intruder UAV, robust tracking is necessary. The maneuvering target tracking survey is
conducted by X. Rong Li and Vesselin P. Jilkov [27]. The authors provide a detailed overview
of multiple-model methods, which have become the dominant approach to maneuvering target
tracking in the recent years. They divide the tracking algorithms into three main groups or
generations to present the survey in a structured manner and help the readers to grasp the
similarities and differences between the various methods.

The first generation of algorithms according to [27] is autonomous algorithms, where
each model (model represents the mode of behavior of the target) operates independently
without direct communication or cooperation. The filters compete with one another, each
striving to offer the best representation of the target’s state. Although this approach has
some advantages, it may not be optimal in situations where cooperation between models
could lead to improved performance. An example of this approach is Multiple Model Adaptive
Estimattion (MMAE).

3https://eagle.one/cs/.
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The second generation of algorithms, named by [27] as cooperating algorithms, addresses
this limitation by involving a certain level of cooperation between the models or filters. Coop-
eration can take various forms, such as sharing information, exchanging estimates, or jointly
optimizing an objective function. By exploiting the strengths of multiple models and filters,
cooperating algorithms aim to enhance the tracking performance. The state-of-the-art is the
Interactive Multi-Model Filter (IMM), used in this work.

Lastly, the third generation comprises variable structure algorithms, which allow the
structure of the algorithm itself to vary or adapt over time based on the target’s dynamics or
other factors. This flexibility can lead to better performance, particularly when the target’s
behavior is highly non-linear or non-stationary. These methods are still an area of active
research and may be challenging to deploy.

This comprehensive survey serves as a useful reference for researchers and practitioners
working on tracking systems and applications that involve maneuvering targets.

1.1.2 Missile Guidance and Proportional Navigation

Missile guidance presents a similar problem to interceptor trajectory planning and there-
fore some missile guidance approaches can be adapted for autonomous aerial interception.

A well-established technique is Proportional Navigation (PN). In [31], the authors com-
pare two classes of PN laws: pure proportional navigation (PPN), which commands the inter-
ceptor by acceleration in the direction perpendicular to its velocity vector, keeping the total
velocity constant, and true proportional navigation (TPN), which commands the acceleration
of the interceptor perpendicular to the line of sight (LOS) changing its total velocity. As a
result, the authors argue that PPN is more practical than TPN and its generalizations and
recommend further investigation into PPN as a guidance law.

From a qualitative point of view, PN is analyzed in [33]. The study determines the
conditions for a missile to reach the target from any initial state and demonstrates the exis-
tence of a boundary for the required acceleration of the missile. When the target maneuvers
with normal acceleration, the missile’s trajectories are defined by a nonlinear time-varying
system of differential equations, which cannot be solved analytically. Their approach makes
strong assumptions and reduces this system of differential equations to a single, first-order,
linear time-varying differential equation, which can be solved in analytic terms. However, this
paper aims to show that qualitative methods can be applied to obtain a general solution when
considering a planar pursuit.

1.1.3 Model Predicitive Control and Trajectory Planning

A higly influential work on trajectory planning in cluttered indoor environments is [23].
Richter, Bry, and Roy presented a novel approach to generate polynomial trajectories. Their
method involves the joint optimization of polynomial path segments using an unconstrained
quadratic program. This approach has the advantage of being numerically stable for high-order
polynomials and a large number of segments, leading to more efficient trajectory planning.

Another innovation in their work is a technique for automatically allocating time to each
segment of the trajectory, which allows for adjusting quadrotor speeds along the path. The
time allocation is based on a single parameter determining aggressiveness, subject to actuator
constraints. By automatically determining the appropriate time allocation for each segment,

CTU in Prague Department of Cybernetics
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the algorithm can adapt to different levels of aggressiveness and achieve smooth, dynamically
feasible trajectories.

The use of polynomial trajectories, combined with the differentially flat representation
of the quadrotor, eliminates the need for computationally intensive sampling and simulation
in the high-dimensional state space of the vehicle during motion planning. This results in
faster generation of high-quality trajectories compared to purely sampling-based planning
methods. However, this approach sacrifices the guarantee of asymptotic convergence to the
global optimum that sampling-based methods provide.

Recently, a novel approach to enable a UAV to land autonomously on an oscillating
platform, such as an Unmanned Surface Vehicle (USV), is presented in [1]. The primary
contributions of the study include the development of a prediction pipeline that uses pose
estimation data from an AprilTag marker and the Fast Fourier Transform (FFT) to analyze
and predict the periodic motion of the USV induced by the waves, and the implementation
of a Model Predictive Control (MPC) algorithm that optimizes landing trajectories while
considering the oscillating platform’s motion.

Both numerical and realistic simulations using Gazebo were conducted to validate the
performance of the proposed system, highlighting that the novel MPC-NE algorithm achieves
better landing results with lower tilt angles upon touchdown and shorter solution times com-
pared to the state-of-the-art SH-MPC. The results of the study showed that the proposed
approach is highly effective in predicting the motion of the USV and ensuring safe and suc-
cessful landings even under challenging conditions. In the real-world experiments, the UAV
was able to land within 50 seconds of acquiring the required FFT accuracy, with tilt angles
upon touchdown less than 5◦ (0.09 rad).

Figure 1.2: Depiction of the UAV
interception problem from MBZIRC
addressed in the [6].

Figure 1.3: figure
Illustration of an autonomous UAV
landing on an oscillating platform as

presented in [1].

A mathematical model of the physical system plays a key role in MPC. However, mod-
eling all phenomena can be difficult or even unfeasible. In this research paper [10], Torrente
et al. propose an innovative approach to improve the position tracking of a quadrotor by
integrating Gaussian Processes (GPs) with Model Predictive Control (MPC). The primary
focus of the study is to compensate for aerodynamic effects that often hinder the quadrotor’s
performance. The authors present a data-driven MPC method, in which GPs are used to aug-
ment the nominal dynamics of a quadrotor. The GP models are trained on previously recorded
flight data to predict acceleration errors of the nominal model, given the current velocity in the

CTU in Prague Department of Cybernetics



1. INTRODUCTION 6/42

body frame. The resulting system significantly improves the quadrotor’s positional tracking
accuracy, both in simulations and in real-world experiments.

The paper demonstrates that their GP-augmented MPC method outperforms a state-
of-the-art linear drag model in various experiments. In real-world experiments, their approach
exhibits up to a 50% improvement in tracking performance compared to the linear drag model.
Furthermore, the GP-augmented controller is particularly effective in situations where linear
drag models fail to capture the nonlinearity of aerodynamic effects.

This work has important implications for future research, as the authors suggest that
leveraging the fast fitting time of their GP models can enable real-time adaptation of the dy-
namic model to varying conditions, such as wind disturbance or battery voltage. Additionally,
the predicted uncertainty in their method can be used to plan safe, agile trajectories close to
obstacles.

1.2 Problem statement

Based on the detection and uncertainty analysis related to the measurement uncertainty
of a maneuvering UAV with an onboard LIDAR system, as described in [4], this work aims to
enhance the original tracking method by dynamically scaling the measurement covariances.
Additionally, an Interacting Multiple Model (IMM) filter will be incorporated to enable effec-
tive tracking of even highly maneuverable UAVs. These improvements will be comprehensively
evaluated and compared with the original method using several established metrics.

For interception trajectory planning, Proportional Navigation will be scrutinized and
enhanced to better suit UAV interception scenarios. In addition, non-linear model predictive
control (NMPC) will be employed to manage the UAV and address the interception problem.
Rigorous tests will be performed in simulations to assess these algorithms and to benchmark
them against the original solution using various metrics. Proportional Navigation will also
undergo real-world testing. This comprehensive approach aims to provide robust and reliable
solutions to the challenges posed by UAV interceptions.

1.3 System overwiev

The proposed interception solution’s pipeline is illustrated in Fig. 1.4. The components
of the problem addressed in this thesis are highlighted in red, while the functionalities of
the MRS UAV control system [7], [17] are marked in green. This work mainly focuses on 3D
tracking and interception planning.

Input pointcloud
from LiDAR sensor

Detection
of the target

3D tracking and
position prediction

of the target

Interception
planning

Trajectory
generation (MPC)

Self-localization and
SE(3) controler

PixHawk, IMU,
GPS, magnetometer

ESCs, motors

Figure 1.4: Overview of the interception pipe.
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Chapter 2

Detection and Tracking

Figure 2.1: The picture on the left displays a Gazebo, used for simulations. The picture on
the right exhibits the tracker implemented in this chapter. It is worth noting the broader
covariance of the target position due to the yawing of the interceptor.

The performance of the intercepting algorithm is heavily influenced by the performance
of the tracking algorithm and the state estimation. Specifically, if the intruder UAV is not
visible or the estimate of its state is inaccurate, interception becomes either impossible or
ineffective. Furthermore, considering the interception pipeline (shown in Fig.1.4) in a linear
way, where the drone is first detected and later intercepted, one might assume that detection is
not affected by the interception. However, as our goal is to create a fast and agile interceptor,
tracking is in practice disrupted by highly agile maneuvers.

While it is possible to develop intercepting algorithms capable of addressing specific
limitations of detection, doing so could compromise interceptor performance. Moreover, it is
essential to design intercepting algorithms that are as independent of detection as possible,
as this would result in more general and applicable outcomes in the end.

For all these reasons, I decided to enhance the original pipeline 2.1, proposed in [4].
The biggest challenges involved dealing with the high uncertainty of the interceptors’ pose
during interceptor maneuvers and estimating the future trajectory of a hostile drone without
knowing its control inputs. These problems are addressed in the following subsections.

2.1 Flying object detection

The method proposed in [4] utilizes a 3D LiDAR sensor to track the intruder drone.
LiDAR operates by emitting laser pulses and measuring the time it takes for the light to reflect

CTU in Prague Department of Cybernetics
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back after encountering an object. This technique offers numerous advantages, including high
accuracy and robustness under various environmental conditions. Most notably, it enables the
detection of even small objects and accurately determines their range despite the presence of
a noisy background.

Figure 2.2: Overview schematic of the detection and tracking pipeline. Illustration taken from
[4].

For this purpose, a novel and innovative approach based on a 3D occupancy voxel
mapping method for target detection is proposed in [4]. The approach is further enhanced
by a cluster-based multiple hypothesis tracker, which effectively compensates for delays and
sporadic false detections. This makes the detector an excellent candidate for agile multi-robot
interactions, specifically in the domain of autonomous aerial interception.

The method of [16] is based on a LiDAR sensor mounted on a UAV and it has already
been successfully implemented in practice, specifically on the prototype Autonomous Aerial
Interception System (AAIS) platform, named Eagle One1 (as shown in Fig 1.1).

An overview of the detection system is presented in Fig. 2.2. The main element of the
system is a Detection module that relies on an occupancy voxel map M. Scans from the
LiDAR are transformed to a static world frame based on the UAV’s self-localization pipeline.
The transformed scans P are used to iteratively update M. Typically, the map M contains
voxels classified as unknown (no information provided yet), occupied, free, and sometimes
uncertain. However, this method implements a key new state called “tentative occupied,”
that allows the detection of flying objects based on the clustering of voxels classified as such.
The idea is illustrated in Fig. 2.3.

A tracking algorithm, which will be the subject of further discussion later, is used
to associate subsequent detections corresponding to the same objects. It receives the latest
filtered point clouds P, detections D, and the latest occupancy map M .

The tracker keeps a buffer of the last Nbuf point clouds sorted by the time of acquisition.
When a new set of detections D is obtained, the corresponding point cloud is selected from
the buffer. Each detection from D is then tracked through subsequent point clouds in the
buffer to the latest one using a Kalman Filter (KF)-based multi-target tracking algorithm.

The detections D and map M are typically several iterations older than the newest
point cloud in the buffer. Based on the uncertainty of the track, which is predicted to the
time of the next point cloud using information from the older M and D, part of the newer
point cloud is selected around the predicted position of the track. Points within the selection
are clustered based on minimizing the inter-cluster distance. The centers of the clusters are
tried for association and used to update already existing tracks, using prediction uncertainty

1https://eagle.one/cs/.
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Figure 2.3: The diagram illustrates the dynamic evolution of voxel classifications within map
M as an initially stationary object suddenly begins to move. The implementation of a unique
“tentative occupied” state allows for the efficient detection of this motion. Illustration taken
from [4].

once again. This is another key feature of this approach and should be properly highlighted
because it allows the processing and finding of track updates practically in all point clouds,
including the most recent one, while allowing a robust detection method based on a voxel
map with relatively high delay.

The provided solution is capable of detecting flying objects up to 10 times per second,
based on the LiDAR’s rate. The quality of the tracks, based on the detections provided with
known uncertainties, is highly dependent on the tracking algorithm used.

2.2 Drone Dynamics and Tracking Algorithms

After successful detection, the target needs to be tracked, with its state estimated. There
are several methods that can be utilized for this purpose. To comprehend these options fully,
we first study the dynamics of drones, given the assumption that we are tracking another
drone.

2.2.1 Target model

The nonlinear dynamics of a UAV can generally be defined as follows:

ṙ = v, (2.1)

mv̇ = fRe3 +mge3, (2.2)

Ṙ = RΩ̂, (2.3)

JΩ̇+Ω× JΩ = M, (2.4)

where r = [x, y, z]T denotes the position, R(ϕ, θ, ψ) ∈ SO(3) represents the orientation
of the UAV, and Ω ∈ R3 is the angular velocity in the body-fixed frame. The hat map
.̂ : R3 → SO(3) is defined by the condition x̂y = x × y for all x,y ∈ R3. The mass of the
UAV is given by m, J denotes the inertia matrix, M represents the total moment, and g is
the gravitational acceleration. Lastly, f refers to the net thrust produced by the propellers.

Significant aspects to consider when dealing with UAVs are the jerk j and the snap s.
These terms represent the third and fourth derivatives of the position, respectively. Minimizing
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Figure 2.4: The world coordinate frame w in which the position and orientation of the UAV
is expressed by translation r = [x, y, z]T and rotation R(ϕ, θ, ψ). Taken from [17].

these variables is usually desired to ensure smooth and efficient trajectories, as doing so
reduces mechanical stress, conserves energy, and enhances overall safety. These observations
can potentially be leveraged during the tracking process.

Traditionally, maneuvering targets are perceived as objects capable of abruptly changing
their acceleration. However, due to the inherent dynamics of drones, abrupt changes in accel-
eration are not feasible. A suitable analogy is that just as an airplane cannot instantly reverse
its velocity, a drone’s dynamics only allows for discontinuous changes in angular acceleration
(when neglecting the dynamics of propellers).

We assumed that when a UAV is flying at a constant height, the acceleration is propor-
tional to tilt, the jerk is approximately equal to the tilt rate, and the snap is proportional to
the tilt acceleration, which can be changed discontinuously. While this example is a consider-
able simplification of the real dynamics, it can provide the necessary insight into the dynamic
behavior of a UAV.

For this reason, a non-linear model was considered to capture this and other phenomena
inherent in UAV dynamics. However, during initial experiments, even the Extended Kalman
Filter (EKF) [28] or the Unscented Kalman Filter (UKF) [28] struggled with a maneuvering
target UAV due to high measurement uncertainty and agile maneuvers of the interceptor
UAV. This issue may largely arise from the fact that the measurements include only positional
information. Note that these simulations were done using MATLAB [5].

Therefore, we decided to opt for a simpler LTI model to address the complexities and
uncertainties inherent in drone tracking. Despite this decision, the deeper understanding of
drone dynamics we gained from this exploration is invaluable for future refinements and
adaptations of the model.
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2.2.2 Kalman Filter

A classical approach to tracking a Linear Time-Invariant (LTI) system is the Kalman
Filter (KF) [35]. The KF is a linear, recursive estimator that provides optimal state estimation
for linear systems with additive Gaussian noise.

The KF operates in two main steps: prediction and correction. The filter equations for
the prediction phase are as follows:

x̂k|k−1 = Fkx̂k−1|k−1 +Bkuk, (2.5)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk. (2.6)

The filter equations for the correction phase are as follows:

Sk = HkPk|k−1H
T
k +Rk (2.7)

Kk = Pk|k−1H
T
k S

−1
k , (2.8)

vk = zk −Hkx̂k|k−1, (2.9)

x̂k|k = x̂k|k−1 +Kkvk, (2.10)

Pk|k = (I−KkHk)Pk|k−1. (2.11)

Here, Fk is the state transition matrix, Bk is the control input matrix, uk is the control input
vector, Hk is the measurement matrix, Qk is the process noise covariance, and Rk is the
measurement noise covariance. x̂k|k−1 and x̂k|k represent the state vectors, Pk|k−1 and Pk|k
are the state covariance matrices, Kk is the Kalman gain, Sk is the innovation covariance,
and vk is the innovation. The subscript notation k|k − 1 denotes the estimate at time step k
given information up to time step k − 1, while k|k denotes the estimate at time step k given
information up to time step k.

The measurement likelihood can be computed as a multivariate Gaussian probability
density function using the innovation and innovation covariance:

p(zk|x̂k|k−1) =
1√

(2π)n|Sk|
exp

(
−1

2
vT
k S

−1
k vk

)
, (2.12)

where n is the dimension of the measurement vector zk, and |Sk| denotes the determinant of
the innovation covariance matrix Sk. The optimal task that the KF solves is the estimation
of the true state of a linear system with Gaussian noise while minimizing the mean squared
error. For Gaussian distributions, the logarithm of the likelihood function is proportional
to the negative of the squared error. Therefore, maximizing the likelihood is equivalent to
minimizing the squared error [35]. This makes the KF an optimal linear estimator in the
presence of Gaussian uncertainties.

Two significant observations were made when considering the tracking of agile, non-
cooperative UAV using a linear KF.

Firstly, the agility of the drone, coupled with the lack of information regarding its
control signals, introduces a considerable degree of uncertainty in the state estimates. This is
indeed a crucial factor, as the performance of the tracking algorithm hinges on how effectively
it can handle this inherent uncertainty. It is especially significant for algorithms like the
Kalman Filter, which assumes a linear and Gaussian nature of the system’s dynamics and
noise characteristics.

CTU in Prague Department of Cybernetics



2. DETECTION AND TRACKING 12/42

Secondly, for the standard linear Kalman Filter, the time evolution of the state covari-
ance matrix P, which is used in the calculation of the Kalman gain K, is primarily determined
by the process noise covariance Q, the measurement noise covariance R, and the initial state
covariance P0. Therefore, in scenarios where the target starts to maneuver abruptly (leading
to high innovation), the Kalman gainKmay remain relatively constant. This could be counter-
intuitive, as one might expect the filter to be more responsive to such significant changes in
the target’s dynamics. An illustrative situation is depicted on Fig. 2.5, where simulation of a
2D moving target tracked using KF with constant velocity model is provided.

Figure 2.5: Simulation of a moving target in 2D tracked using a KF with constant velocity
model. It demonstrates how the uncertainty remains relatively constant despite abrupt turning
oh the target, highlighting a potential limitation when tracking a maneveuring drone.

2.3 Understanding Measurement Uncertainty

An exploration of literature in the domain of LiDAR technology [3], as well as an
analysis of outcomes from competitions as presented in [2], [14], [9] or [6], could lead one
to have confidence in the tried and tested design of mounting a LiDAR sensor on a drone.
However, in these scenarios, the LiDAR sensor is deployed primarily for algorithms such as
the Iterative Closest Point (ICP) [29], where the drone typically moves slowly, without abrupt
directional changes or fast maneuvers.

Preliminary experiments revealed that even minor inaccuracies in the drone’s orientation
estimation during agile maneuvers can markedly impact the system’s accuracy. This effect is
especially noticeable when the target is at a considerable distance and the drone’s orientation
is uncertain. In subsequent sections, we will formally scrutinize this observation and discuss
its implications. It is worth highlighting that the remainder of this section largely paraphrases
[4], a work being conducted concurrently with this thesis.
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2.3.1 LiDAR Measurement Uncertainty

Let us consider a single point pm that is measured by a LiDAR sensor with a (unit)

direction vector
−→
d and a corresponding range lm. The pose of the sensor in a static world

frame W is represented by a translation vector tm and rotation matrix Rm. The measured
point pm can be expressed as a function of the measured range, translation, and rotation as

pm = lmRm
−→
d + tm. (2.13)

If we had absolute accuracy in the measurements of the sensor’s pose and range, we could
obtain the corresponding ground-truth point pgt as

pgt = lgtRgt
−→
d + tgt (2.14)

where lgt, tgt, and Rgt represent the ground-truth (noise-less) range and pose.

We can model the relation between the measured values lm, tm,Rm and their corre-
sponding ground-truth values as

lgt = lm + ln, (2.15)

tgt = tm + tn, (2.16)

Rgt = RmRn = RmRz (γn)Ry (βn)Rx (αn) , (2.17)

where ln, tn, and αn, βn, γn represent the unobservable measurement noise. We define a vector
w that is assumed to be drawn from a multivariate Gaussian distribution as

w =
[
ln t⊤n αn βn γn

]⊤
, (2.18)

w ∼ N (0,Σw) , (2.19)

where Σw is a known covariance matrix of the measurement noise.

In practice, the true position of pgt is unknown, but its probability distribution can be
estimated given the measured point pm and the measurement uncertainty Σw. Although an
analytical solution may not be practical, the probability distribution can be approximated
using linearization from equations (2.15)-(2.17) as a Gaussian distribution with mean µ and
covariance matrix Σ. The transformation of the known covariance Σw of the random variable
w to the covariance Σ can be derived as

Σ = JΣwJ
⊤, J =

∂pgt

∂w

∣∣∣∣
w=0

(2.20)

Using the substitutions

Ṙαn =
∂Rx

∂αn

∣∣∣∣
αn=0

, (2.21)

Ṙβn =
∂Ry

∂βn

∣∣∣∣
βn=0

, (2.22)

Ṙγn =
∂Rz

∂γn

∣∣∣∣
γn=0

, (2.23)

the Jacobian J evaluates to

J =
[
Rm

−→
d I lmRmṘαn

−→
d lmRmṘβn

−→
d lmRmṘγn

−→
d

]
(2.24)
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The mean µ of the linearized distribution is the expected value of pgt, which can be obtained
from equation (2.13 as

µ = E [pgt] = pgt|w=0 = pm. (2.25)

The approximated probability density function of pgt is then

fpgt(p) ≈ fN (p,µ,Σ), (2.26)

which represents a multivariate normal probability density function with mean µ and covari-
ance Σ. This principle is illustrated in Fig. 2.8.

Figure 2.6: αn = 0◦. Figure 2.7: αn = 8◦.

Figure 2.8: Illustration of orientation uncertainty’s impact on LiDAR measurement precision.
Both scenarios involve a 20-meter distance to the measurement point.

Unfortunately, the current session of the MRS UAV system [7] does not provide covari-
ance estimates of drone orientation. Despite significant effort, additional attempts to extract
these estimates from the PixHawk flight controller2 have also been unsuccessful. As an alter-
native, these covariances were approximated using angular rates, which were adjusted using a
calibrated coefficient. Despite this simplification, the method has been proven to significantly
enhance tracking performance, as demonstrated in section 2.5.3.

2.4 Tracking a Maneuvering target

In a typical scenario, KF incorporates known input into the system. However, in the
case of a non-cooperative drone, this information is unknown. For simplicity, let us consider
the constant velocity (CV) model. Setting a lower process noise Q, we can achieve excellent
tracking performance when the target is moving in a straight line. However, this might result
in poor performance or even loss of tracking during maneuvers. On the contrary, setting a
higher process noise might increase the overall error. Alternatively, models such as constant
acceleration (CA) or constant jerk (CJ) could be used to achieve effective tracking with low
error during maneuvers. Still, the issue of high noise during linear movement would persist. The
solution is to utilize multiple models simultaneously and switch between them intelligently.

2.4.1 Interacting Multiple Model filter

The Interacting Multiple Model (IMM) filter is a sophisticated, probabilistic filtering
technique used for estimation problems with multiple dynamic models. This filter is particu-
larly useful in situations where the actual motion of a target or system may abruptly change

2https://docs.px4.io/main/en/.
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or is governed by different modes. IMM operates by running multiple filters in parallel, each
assuming a different dynamic model, and then combining their results based on model prob-
abilities. These probabilities are updated at each time step using a Markov chain approach,
effectively capturing the likelihood of each model given the observed data. This allows the
IMM filter to provide more accurate and reliable estimates than a single-model approach,
particularly in the context of tracking targets with complex, multimodal behavior [27].

The IMM method operates through a sequence of a mixing phase and a filtering phase.
Each phase is executed as follows:

Mixing

In the mixing phase, the state estimates of model i, denoted as x̂
(i)
k−1|k−1, and covari-

ances, denoted as P
(i)
k−1|k−1, from the previous time step are combined based on a Markov

chain model, which is used to describe the probability pji of transitioning from model j to
model i. This process generates new mixed estimates and covariances for each filter, repre-

sented as x̂
(i)
k|k−1 and P

(i)
k|k−1 respectively. The equations for the mixing phase can be described

mathematically as:

µ
(i)
k|k−1 =

N∑
j=1

pjiµ
(j)
k−1, (2.27)

µ
(j|i)
k−1 =

pjiµ
(j)
k−1

µ
(i)
k|k−1

, (2.28)

x̂
(i)
k|k−1 =

N∑
j=1

x̂
(j)
k−1|k−1µ

(j|i)
k−1, (2.29)

P
(i)
k|k−1 =

N∑
j=1

µ
(j|i)
k−1

[
P

(j)
k−1|k−1 + (x̂

(j)
k−1|k−1 − x̂

(i)
k|k−1)(x̂

(j)
k−1|k−1 − x̂

(i)
k|k−1)

T
]
, (2.30)

where µ
(i)
k is the probability of mode i at time step k. We can view the mixing step of the IMM

filter as a preparatory process, in which each model is updated independently of its current
probability. The new state for each model is constructed based on the likelihood of all models
transitioning to it, under the assumption that this model is correct. Later, the final estimate
incorporates the actual likelihood of each model.

Filtering

In the filtering phase, each filter performs a standard predict-update cycle using the
mixed estimates and covariances from the mixing phase. This process produces updated es-

timates and covariances for each filter, denoted as x̂
(i)
k|k and P

(i)
k|k respectively. The equations
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for the filtering phase can be described mathematically as:

x̂
(i)
k+1|k = A

(i)
k x̂

(i)
k|k +B

(i)
k u

(i)
k , (2.31)

P
(i)
k+1|k = A

(i)
k P

(i)
k|k

(
A

(i)
k

)T
+B

(i)
k Q

(i)
k

(
B

(i)
k

)T
, (2.32)

K
(i)
k = P

(i)
k|k−1

(
H

(i)
k

)T (
S
(i)
k

)−1
, (2.33)

x̂
(i)
k|k = x̂

(i)
k|k−1 +K

(i)
k

(
y
k
−H

(i)
k x̂

(i)
k|k−1

)
, (2.34)

P
(i)
k|k = P

(i)
k|k−1 −K

(i)
k H

(i)
k P

(i)
k|k−1. (2.35)

Here, K
(i)
k is the Kalman gain, yk is the measurement, H is the measurement matrix, and I is

the identity matrix. A
(i)
k is the state transition matrix, B

(i)
k is the control-input matrix, u

(i)
k is

the control vector, Q
(i)
k is the process noise covariance, and S

(i)
k is the innovation covariance.

The predict and update steps are performed for each model independently. The final step is
the mode probability update:

L
(i)
k = N

(
y
k
y
(i)
k|k1; 0,S

(i)
k

)
, (2.36)

µ
(i)
k =

µ
(i)
k|k−1L

(i)
k∑r

j=1 µ
(j)
k|k−1L

(j)
k

, (2.37)

Where L
(i)
k is the probability of model i being correct given the corresponding measurement

yk, as in equation (2.12). The estimates from all the filters are then combined into a single
estimate using a weighted sum, where the weights are determined by the updated mode
probabilities:

x̂k|k =
r∑

i=1

µ
(i)
k x̂

(i)
k|k, (2.38)

Pk|k =
r∑

i=1

µ
(i)
k

[
P

(i)
k|k + (x̂k|k − x̂

(i)
k|k)(x̂k|k − x̂

(i)
k|k)

T
]
, (2.39)

The estimated state obtained from the IMM algorithm serves as the final output for the
interception algorithms. A comparison of the performance between a simple KF and an IMM
in an example problem is shown in Fig.2.9 (Compare with Fig. 2.5).
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Figure 2.9: This simulation presents a 2D moving target tracked using an IMM filter, featuring
two CV models with distinct process noise levels. The simulation illustrates how uncertainty
increases during abrupt target maneuvers. Compare with Fig. 2.5.

2.4.2 Model Selection and Noise Characterization

In general, it is recommended to keep the number of models reasonably low, as men-
tioned in the survey[27]. For the sake of simplicity, no models tracked with the EKF or UKF
are included in the proposed approach. Instead, several linear models are considered: Constant
Position (CP), Constant Velocity (CV), Constant Acceleration (CA), and Constant Jerk (CJ).
Through experimentation, it was found that the best results were achieved with the CV and
CA models. It should be noted that tuning the IMM filter can be particularly challenging.
Despite efforts to automate the process using MATLAB’s “fmincon” function with collected
data, transferring these results to the simulation was unsuccessful. Therefore, manual tuning
was applied. For the Constant Velocity model, the system is described by the following state
transition matrix:

ACV[k] =

[
I ∆t[k]I

0 I

]
, (2.40)

where I ∈ R3×3 is an identity matrix, 0 ∈ R3×3 is a zero matrix, and ∆t[k] is the duration since
the previous time step k− 1. For the Constant Acceleration model, state transition matrix is:

ACA[k] =

 I ∆t[k]I
1
2∆t

2
[k]I

0 I ∆t[k]I

0 0 I

 . (2.41)

In both models, the input matrix B is an empty matrix, because the target’s control inputs
are unknown in our non-cooperative context. Only the position states are directly observed
in this model. Hence, the measurement matrix H is:

H =
[
I3×3 · · · 03×3

]
. (2.42)
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The model matrices (from equations (2.40), (2.41), and (2.42)) define the dynamics and obser-
vation models for our IMM estimation. Originally [4], the process noise was set using diagonal
matrices scaled by coefficients:

Q = In×n · σ2, (2.43)

where In×n is an identity matrix of size n × n, and σ2 is the noise variance. However, ana-
lytically derived models that are slightly more sophisticated provide more accurate results in
simulation. The process noise QCV for the constant velocity (CV) model is calculated using
the following formula:

QCV = σ2a

[
∆t3

3
∆t2

2
∆t2

2 ∆t

]
, (2.44)

where σ2a is the variance of the acceleration noise in the constant velocity model. This is a
measure of how much the velocity changes randomly over time. ∆t is the time step. The
process noise QCA for the constant acceleration (CA) model is given by:

QCA = σ2j

∆t5

20
∆t4

8
∆t3

6
∆t4

8
∆t3

3
∆t2

2
∆t3

6
∆t2

2 ∆t

 , (2.45)

where σ2j is the variance of the jerk noise in the constant acceleration model. This denotes the
measure of how the acceleration changes randomly over time. A higher process noise places less
emphasis on the process model, causing the Kalman filter to rely more on the measurements
for state correction. The measurement noise dynamically scaled covariance matrix R was
previously discussed in 2.3.1. Each model applies its own tuning coefficient to multiply the
angular rates (these rates approximate the uncertainty in position), and the n×n matrix R0

is added as a constant uncertainty. This mainly accounts for the fact that the drone is not a
point and is only partially visible from certain angles, causing floating center estimation. In
mathematical terms, it can be represented as:

R0 = In×n · cR, (2.46)

where In×n is a n× n identity matrix and cR is a scaling coefficient tuned for each model.

2.5 Tracker performance

In this section, we study the performance of the original KF used for tracking, the
KF enhanced by the improved measurement covariance matrix 2.3.1, and finally, the IMM
algorithm.

2.5.1 Evaluation Metrics

To compere performance of various filters, we consider several metrics:

• Track Interruption Count (TIC) and Tracking Continuity Percentage (TCP):
TIC counts the instances when target tracking was interrupted (target was lost), and
TCP indicates the percentage of total duration during which the drone was successfully
tracked.

CTU in Prague Department of Cybernetics



2. DETECTION AND TRACKING 19/42

• Root Mean Squared Error (RMSE): The RMSE is the square root of the mean
squared error (MSE) and is expressed in the same units as the state variables. The
RMSE is given by:

RMSE =

√√√√ 1

N

N∑
k=1

(x̂k − xk)2. (2.47)

A lower RMSE indicates a better filter performance.
• Normalized Estimation Error Squared (NEES): The NEES assesses the consis-
tency of the filter by comparing the estimation error with the filter’s covariance matrix.
The NEES is defined as:

NEESk = (x̂k − xk)
TP−1

k (x̂k − xk), (2.48)

where Pk is the filter’s covariance matrix at the time step k. An average NEES (ANEES)
over all time steps provides a measure of the filter’s consistency.

2.5.2 Testing procedure

To comprehensively test the tracker’s capabilities under varying conditions, we propose
a systematic approach consisting of progressively more challenging scenarios. For the inter-
ceptor, which tracks the target, we consider three stages: Hovering Interceptor (HI), Flying
Interceptor (FI), and Maneuvering Interceptor (MI).

For each of these interceptor stages, the target goes through three sub-stages: Target
Moving (TM), Target Flying (TF), and Target Maneuvering (TMa). This results in a total of
nine combinations, as shown in the Table 2.1.

Table 2.1: Different Interceptor and Target Scenarios

Target Moving Target Flying Target Maneuvering

Hovering Interceptor HI-TM HI-TF HI-TMa

Flying Interceptor FI-TM FI-TF FI-TMa

Maneuvering Interceptor MI-TM MI-TF MI-TMa

These scenarios are designed to gradually increase in complexity, allowing us to thor-
oughly assess the tracker’s robustness and reliability under diverse and challenging conditions.

Figure 2.10: Flying Interceptor (FI) - The
interceptor is smoothly moving along a
predictable path.

Figure 2.11: Maneuvering Interceptor
(MI) - The interceptor is performing com-
plex and abrupt maneuvers.
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Figure 2.12: Target Moving (TM) - The
target is in motion, moving along an arbi-
trary path.

Figure 2.13: Target Flying (TF) - The tar-
get is flying, indicating controlled move-
ment, likely in a horizontal direction.

Figure 2.14: Target Maneuvering (TMa) -
The target is actively performing complex
and abrupt maneuvers.

Figure 2.15: View on Target Maneuvering
(TMa) from top.

2.5.3 Results

The performance metrics for the three different filters: Constant Velocity Kalman Filter
(CVKF), Constant Velocity Filter with Enhanced Measurement Covariance (CV EMV), and
Interacting Multiple Model (IMM) Filter, are quite distinct. In general, IMM outperforms the
other two across the considered scenarios.

Looking at the Constant Velocity Kalman Filter (Table 2.2), we observe that the filter
performs reasonably well, with track confirmation percentage (TCP) generally above 70%.
However, the root mean square error (RMSE) and average normalized estimation error squared
(ANEES) for position and velocity are high, indicating that the estimated states deviate
significantly from the true states.

For the CVKF with enhanced measurement covariance (Table 2.3), the tracking perfor-
mance improves notably. The track confirmation percentage is higher than with the standard
CVKF, reaching up to 98.13% in the Hovering Interceptor Target Moving scenario. The RMSE
and ANEES metrics also decrease, showing a more accurate estimation of the target states.
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Table 2.2: Performance metrics for the Constant Velocity Kalman Filter

TIC TCP
(%)

RMSE
Pos.

RMSE
Vel.

ANEES
Pos.

ANEES
Vel.

HI TM 8 93.75 1.01 1.12 247.51 968.60
TF 7 81.69 1.96 1.22 353.94 922.85
TMa 12 94.68 1.44 1.99 343.90 382.47

FI TM 7 87.95 0.92 0.92 179.49 815.46
TF 7 87.48 0.94 1.30 123.68 1169.39
TMa 14 91.55 0.91 1.89 77.63 353.64

MI TM 12 71.83 1.28 0.89 222.96 849.23
TF 12 86.23 1.14 1.19 271.44 1329.89
TMa 14 82.94 1.17 2.05 170.36 469.92

Table 2.3: Performance metrics for the Constant Velocity Filter with Enhanced Measurement
Covariance

TIC TCP
(%)

RMSE
Pos.

RMSE
Vel.

ANEES
Pos.

ANEES
Vel.

HI TM 4 98.13 0.79 1.10 34.87 54.14
TF 6 85.94 0.94 1.27 45.40 64.29
TMa 11 81.09 1.08 1.98 66.87 199.72

FI TM 3 95.31 0.72 0.88 25.08 32.68
TF 7 86.56 0.80 1.21 28.85 61.74
TMa 8 90.16 1.01 1.89 53.26 167.98

MI TM 7 75.47 1.14 0.97 39.87 34.66
TF 7 79.38 1.96 1.16 52.18 39.19
TMa 10 82.94 1.28 1.97 69.23 167.35

The IMM filter (Table 2.4) demonstrates superior performance in all scenarios. The
track Interruption Count (TIC) is generally lower than in the previous filters. TCP reaches
100% in the Hovering Interceptor Target Flying scenario, indicating highly reliable tracking.
Furthermore, the RMSE and ANEES metrics are the lowest, showing that IMM provides the
most accurate estimations among the three filters. In conclusion, the IMM filter demonstrates
superior tracking performance under various conditions and therefore is the most robust choice
for UAV tracking tasks.
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Table 2.4: Performance metrics for the Interacting Multiple Model (IMM) Filter

TIC TCP
(%)

RMSE
Pos.

RMSE
Vel.

ANEES
Pos.

ANEES
Vel.

HI TM 2 98.59 0.44 0.58 10.65 3.31
TF 0 100.00 0.40 0.84 10.21 7.16
TMa 2 98.44 0.53 1.51 15.26 18.89

FI TM 2 93.91 0.57 0.44 13.29 2.16
TF 4 88.44 0.72 0.90 25.00 8.04
TMa 3 88.44 0.66 1.69 16.44 23.83

MI TM 3 75.63 1.42 0.56 87.46 3.75
TF 3 94.38 1.52 0.99 40.33 10.75
TMa 4 85.60 1.15 2.05 46.47 36.75
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Chapter 3

Interception trajectory planning

After successful detection of the target drone, the next step is to intercept it. In this
chapter, we explore and compare three different approaches to this challenge. First, a custom
intercepting algorithm created prior by the MRS group is investigated. This algorithm uses
a combination of a carefully chosen interception point and non-linear optimization (NLOPT)
to plan the trajectory 3.1. Secondly, we investigate Proportional Navigation (PN). This is a
method traditionally used homing missiles. We cover its variations, its strengths and weak-
nesses, and any improvements made to the original method 3.2. Lastly, we use of the nonlinear
model predictive control for trajectory planning 3.3. These methods are compared in a realistic
simulation with autonomous aerial interceptor.

3.1 Navigation Based on NLOPT

Prior to the research outlined in this thesis, a preliminary solution was developed by
the MRS group. This method primarily relies on careful interception point selection, rapidly
reaching this point, and subsequently aligning the trajectory with the estimated trajectory of
the target.

The trajectory calculation in this method employs NLOPT [22], [24], which is a versatile,
free, and open source library for non-linear optimization. NLOPT offers a unified interface
for multiple optimization routines. It generates feasible trajectories using polynomial methods
(e.g., splines). An example of this trajectory is shown in Fig. 3.1. Although this approach is
functional, it bears a significant drawback as it relies heavily on the accuracy of the prediction
of the target during the selection of the interception point. Any error in the estimation of the
target’s trajectory can lead to suboptimal results or a potential failure of the system. In the
context of this work, the method of the MRS group will serve as the baseline solution against
which the effectiveness of the new proposals will be evaluated.

3.2 Proportional Navigation

Proportional navigation (PN) is a well-established guidance method in the field of hom-
ing missiles [19]. It relies on the knowledge of the target’s position and velocity. Since its
inception, numerous variations and enhancements have been introduced. A number of these
variations, and a new enhancement tailored to the drone interception scenarios is proposed.

3.2.1 Pure Proportional Navigation

A crucial concept to consider in PN is the Line of Sight (LOS) (see Fig. 3.2), which
is a line between an observer and the target. The fundamental idea of PN comes from the
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Figure 3.1: Representation of the interception point selection (first red waypoint) and trajec-
tory alignment strategy developed by the MRS group.

observation that if the orientation of the LOS remains constant, the interceptor and the target
are on a collision course. To utilize this observation, the rate of change of the LOS, denoted
as λ̇, is defined. The control law of PPN outputs the desired acceleration of the interceptor
based on this rate of change. This is given by

ai = N · Vc · λ̇, (3.1)

where ai is the commanded acceleration to incerteptor perpendicular to velocity vector, N is
a constant gain, typically set to 3 or 4 in most applications, and Vc is the interceptor velocity.
In Eq. (3.1), we observe that the acceleration is determined proportionally to the LOS rate
and the interceptor velocity, both multiplied by the gain N .

PPN commands acceleration perpendicular to the missile’s velocity, thus maintaining
its total velocity constant. This approach is suitable for missiles with control solely via aero-
dynamic surfaces. However, it’s not quite suitable for drone interception as it introduces
complexity in selecting the appropriate speed, which can complicate the interception process.
Therefore, this variant is not employed.

3.2.2 True Proportional Navigation

In contrast to PPN, True Proportional Navigation (TPN) commands the interceptor
perpendicular to its LOS. This method allows for changes in velocity magnitude. Despite
these characteristics, TPN still encounters specific issues. Consider, for instance, a scenario
where, after an unsuccessful interception attempt, the LOS rate remains zero because the
interceptor was initially on a collision course with the target. In this situation, the interceptor
would not initiate a second attempt, which is adequate in the context of missiles but not in
the case of drones, which may necessitate multiple attempts.
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Figure 3.2: An illustration of the fundamental concepts of Proportional Navigation (PN),
specifically showcasing the Line of Sight (LOS).

Secondly, if both the target and the interceptor are stationary, the LOS also does not
change, therefore no engagement occurs. This is not a problem for missiles as TPN is typically
employed only during the homing phase when the missile is already in proximity to the target.
However, for drone interceptions, where multiple attempts may be desirable, this limitation
can become problematic.

3.2.3 Optimal Guidance and Zero-Effort Miss (ZEM) Formulation of Pro-
portional Navigation

The interception problems can be viewed through the lens of optimal control theory
[26], [32], [30]. Assume that the target is non-maneuvering, and the control applied to the
interceptor is the acceleration. This forms a system of equations

ż =

[
ż1
ż2

]
=

[
0 I
0 0

]
︸ ︷︷ ︸

A

[
z1
z2

]
︸︷︷︸

z

+

[
0
−I

]
︸ ︷︷ ︸

B

u, u = ai, (3.2)

where z1 = rt−ri represents the relative position between the target and the interceptor, with
rt denoting the target’s position and ri representing the interceptor’s position. z2 = vt − vi
signifies the relative velocity between the target and the interceptor, with vt as the target’s
velocity and vi as the interceptor’s velocity. I is a 3x3 identity matrix, and 0 is a 3x3 zero
matrix. Finally, u is the control input of the system, with acceleration acting as the controlled
quantity. In the equation, ai is the acceleration vector of the interceptor.

The aim is to determine the control law u(t), for t0 ≤ t ≤ T , that minimizes the cost
function

J (z0, u(·), t0) =
1

2
z⊤(T )Qfz(T ) +

1

2

∫ T

t0

u2(t)dt, (3.3)
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subject to the dynamics defined by Eq. (3.2), with z (t0) = z0 and t0 ≤ t ≤ T . The cost matrix
Qf is defined as:

Qf =

[
b 0
0 c

]
, (3.4)

where the b component indicates the weight given to minimizing the miss distance, and c
corresponds to the emphasis on velocity matching at the point of interception.

This interception problem can be regarded as a quadratic optimization problem [30].
Leveraging optimal control theory [32] and solving the associated Riccati equation, the general
solution [26] for the control input can be expressed as

u∗ =
3

t2go

[(
1 + c

2 tgo
)
z1 +

(
c
3 tgo + 1 + c

b t
2
go

)
tgoz2

1 + 3
btgo

(1 + ctgo) +
c
4 tgo

]
, (3.5)

where tgo denotes the time-to-go until interception. Note that the above control law adjusts
the acceleration of the interceptor based on both the current relative position (z1) and the
relative velocity (z2) between the target and interceptor, as well as the time-to-go. The the

time-to-go, tgo, is estimated as the ratio ||z1||
||z2|| . This ensures a dynamic adjustment mechanism.

However, if we neglect the importance of meeting velocity, and consider the limiting
case of b→ ∞, the control law simplifies to

lim
b→∞,c→0

{u∗ (tgo; b, c)} =
3 (z1 + tgoz2)

t2go
, (3.6)

This simplification leads to the control law

u∗ = 3
ZEM

t2go
, (3.7)

where ZEM signifies the Zero-Effort Miss distance. While it may not be immediately apparent
that the optimal control law in Eq. (3.5) and the PN law in Eq. (??) share a similar structure,
it can be demonstrated [26] that they are indeed equivalent to each another, and the optimal
gain, N , is 3.

This formulation allows for multiple attempts. However, it doesn’t initiate engagement
when the relative velocity z2 is zero. Furthermore, during initial simulations, it was observed
that the second engagement occurs slowly, and that for certain trajectories (e.g., circular), this
control methodology can lead to the interceptor stalling in a fixed position behind a turning
target.

To address these limitations, I propose a modification to the control law. The key idea
is to produce higher control inputs when the target and interceptor are futher apart or not
moving. This is accomplished by introducing a new term to the control law:

ai = N · z1 + z2tgo
t2go

− 1

H
∥z1∥2

z1
∥z1∥

. (3.8)

where H serves as a design parameter that balances the importance between the distance
to target and the prediction accuracy when utilizing Proportional Navigation (PN). Fig. 3.3
shows vector field of desired acceleration for PN, while Fig. 3.4 shows how the field changes
with this modification.
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Figure 3.3: Simulation of Proportional
Navigation (PN) in the form of Zero-Effort
Miss (ZEM).

Figure 3.4: Enhanced Proportional Naviga-
tion implementation with improved intercep-
tion strategy.

Figure 3.5: Comparison of original and Enhanced PN. Colors code desired acceleration. Target
UAV is in origin. Acceleration of interceptor in hypothetical positions is denoted using arrows.

The proposed modification in eq. (3.8) ensures that the control input increases with
the distance between the interceptor and target and decreases when they are stationary. This
creates a more responsive and robust control system, preventing the interceptor from becom-
ing trapped in a constant position behind a maneuvering target. The desired acceleration is
adjusted to adhere to the interceptor’s limits, and using the current state of the interceptor, a
trajectory is sampled. This trajectory is subsequently published to the pipeline as referenced
in 3.16. Simulation of first two interception attempts is depicted in Fig. 3.10.
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Figure 3.6: Beginning of the interception
attempt.

Figure 3.7: First interception attempt.

Figure 3.8: After the first interception at-
tempt.

Figure 3.9: Second interception attempt.

Figure 3.10: Proportional Navigation (PN) Simulation. Color codes velocity. Maximal velocity
(red) is 12 m/s.

3.3 Nonlinear Model Precitive Control

Nonlinear Model Predictive Control (NMPC) is a control strategy that solves an open-
loop optimal control problem at each sampling time instant, using the current state of the
system as the initial condition, over a finite horizon, to obtain an optimal control sequence.
This sequence is determined by minimizing a cost function, subject to the system’s dynamics
and other constraints. The first control input of the optimal sequence is then implemented on
the system.

There are various strategies to solve this problem, and one such strategy is the Direct
Single Shooting method [34]. Single Shooting is a direct method for solving optimal control
problems where the control sequence is parameterized, and the system dynamics are integrated
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forward in time for each potential control sequence. The control sequence that minimizes the
discrepancy at the end of the prediction horizon, the so-called ”shooting gap”, is selected as
the optimal control input.

The Single Shooting method involves solving the following optimization problem:

minimize
u(k)

J(u(k),x(0)), ∀k ∈ {0, 1, . . . , N}

subject to

x(0) is given, ∀k,
f(u(k),x(0)) ≤ 0, ∀k,
g(u(k),x(0)) = 0, ∀k,

u(k) lies within defined constraints, ∀k,

(3.9)

In this formulation, the system dynamics are intentionally omitted as all states are expressed
as a function of u and x0. Constraints on the states x(k) can be represented using the functions
f and g.

The optimization problem is solved over a prediction horizon of length N , with k ranging
from 0 to N . The control sequence u(k), defined for each k within this interval, is typically
initialized with an estimate, and the optimization algorithm iteratively refines this estimate
to find the sequence that minimizes the objective function J(u(k),x(0)). This procedure
continues until a specified termination condition, such as a maximum number of iterations or
a tolerable level of precision, is met.

3.3.1 NMPC control problem formulation

For the purpose of formulating control problem to be solved by the NMPC, both, the
interceptor and target are modeled as point-mass up to their acceleration. This is a good
compromise between fidelity and computational time. The objective function is to minimizing
predicted distances over the control horizon.

The dynamics of this discrete-time Linear Time-Invariant (LTI) system can be repre-
sented in a state-space form. Let x[k] ∈ R15 represent the state of the system, and u[k] ∈ R3

be the control input. The system is defined as follows:

x[k + 1] = Ax[k] +Bu[k] (3.10)

where the state transition matrix A ∈ R15×15 and the control input matrix B ∈ R15×3 are
given by:

A =


I ∆tI 0
0 I ∆tI

I ∆tI ∆t2

2 I
0 I ∆tI
0 0 I

 , (3.11)

B =


∆t2

2 I
∆tI
0
0
0

 . (3.12)
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Here, I is the 3 × 3 identity matrix, 0 is a 3 × 3 zero matrix, and ∆t is the time step of our
discrete-time system. Even though that model is linear, NMPC was chosen because of trial
experimentation with objective functions and its possibility to include obstacle avoidance in
the future.

To define constraints on the velocities and accelerations, let us denote the maximum
velocities as vx max, vy max, vz max and maximum acceleration as ax max, ay max, az max. All
parameters for NMPC control problem are in table 3.1. The optimal control problem is then:

min
u

∥x[N ]1:3 − x[N ]7:9∥2 +
N−1∑
k=0

∥x[k]1:3 − x[k]7:9∥2 , (3.13)

subject to

x[0] = x0, (3.14)

x[k + 1] = Ax[k] +Bu[k], k = 0, . . . , N − 1, (3.15)

− vx max ≤ x[k]4 ≤ vx max, k = 1, . . . , N, (3.16)

− vy max ≤ x[k]5 ≤ vy max, k = 1, . . . , N, (3.17)

− vz max ≤ x[k]6 ≤ vz max, k = 1, . . . , N, (3.18)

− ax max ≤ u[k]1 ≤ ax max, k = 0, . . . , N − 1, (3.19)

− ay max ≤ u[k]2 ≤ ay max, k = 0, . . . , N − 1, (3.20)

− az max ≤ u[k]3 ≤ az max, k = 0, . . . , N − 1. (3.21)

The formulation provided above, while not directly applicable to the single shooting
method, is used for its superior clarity. However, it will subsequently be transformed for
compatibility with the single shooting method using OpEn [12].

Description Parameter Value

Prediction horizon length N 20

Time step ∆t 0.4 s

Maximum velocity vmax,x, vmax,y, vmax,z 8 m/s, 8 m/s, 3 m/s

Maximum acceleration amax,x, amax,y, amax,z 3 m/s2, 3 m/s2, 2 m/s2

Table 3.1: Optimization parameters used for the NMPC control problem.

To solve the optimal control problem using NMPC, several off-the-shelf optimizers were
considered. One suitable choice is the OpEn optimizer [12], which utilizes the Proximal Aver-
aged Newton-type method (PANOC) [21]. OpEn has been successfully applied to control UAVs
and ground robots in previous works [8], [11], [15], [18]. It is capable of handling challenging
optimization problems involving nonlinearities and constraints, making it appropriate for our
current problem. Using an optimizer like OpEn can significantly boost the computational ef-
ficiency of the NMPC algorithm, making it suitable for real-time applications. During initial
experiments with doMPC1 based on [20], I found that OpEn offered superior performance
speed. Simulation of first two interception attempts is depicted in Fig. 3.15.

1https://www.do-mpc.com/en/latest/.
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Figure 3.11: Beginning of the interception
attempt.

Figure 3.12: First interception attempt.

Figure 3.13: After the first attempt. Figure 3.14: Second interception attempt.

Figure 3.15: Simulation of NMPC. Color codes velocity. Maximal velocity (red) is 12 m/s.

3.4 Heading control

For all types of control, the heading of the interceptor is commanded to face the target
at all times. The desired heading is dynamically adjusted based on the relative positions of
the interceptor and the target. This concept can be formulated mathematically as:

ηd = atan2 (yt − yi, xt − xi) , (3.22)

where ηd is the desired heading, (xi, yi) are the coordinates of the interceptor, and (xt, yt) are
the coordinates of the target. Here, the atan2 function is used instead of the standard atan
function to account for the full range of possible angles (0 to 2π), ensuring that the correct
quadrant for the angle is chosen based on the signs of xt − xi and yt − yi.This continuous
adjustment of the interceptor’s heading ensures that it always faces the target, which is crucial
for accurate and effective interception.
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3.5 UAV Control

The planned trajectories are subsequently published to the MRS (Multi-Robot Systems)
control system [7], [17]. This stack is designed to process all aspects of the planned trajectories,
including heading, to ensure a stable and consistent flight trajectory, which is executed by
the system. An overview of the MRS control stack and how it interfaces with the planned
trajectories is illustrated in Figure 3.17.

Figure 3.16: Schematic representation of the MRS control stack interacting with the planned
trajectories. The diagram illustrates how the optimal trajectories are published to the stack,
which then processes them to ensure stable flight control of the UAV. All of the proposed
navigations are inside of mission logic. Collision avoidance is offline during all interception
attempts.

Using the MRS control stack, we ensure that the UAV follows the optimal trajectory
as closely as possible, while also considering real-world constraints and flight dynamics. This
approach combines the mathematical optimality of our trajectory planning with robust, field-
tested UAV control strategies. It allows the UAV to effectively follow the desired trajectory
and aim towards the target, ultimately ensuring successful interception.

3.6 Results

This section provides a summary of the experimental evaluation of the functionality
and effectiveness of the entire interception pipeline. The approach and methods employed in
this work have been rigorously tested in a simulation and further validated with a real-world
experiment.
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3.6.1 Simulations

Figure 3.17: Visualization of the testing trajectory color-coded according to velocity.

Trajectory of the target used for testing, where the color map encodes the velocity, is
illustrated on Fig. 3.17. One round of the trajectory takes approximately 400 seconds. For each
intercepting algorithm, two rounds were simulated. The interceptor, target, and lidar models
align closely with reality. MRS UAV system [7], [17] with Gazebo2 serves as the simulation
tool.

An interception attempt is defined as closing the distance between the UAVs to less than
two meters. The maximum duration for each attempt is set to 4 seconds to avoid counting near-
flight as a multiple interception attempts. The results of these simulations are summarized in
table 3.2. The first column shows the number of attempts during the whole simulation. The
second column is the average miss distance, and its standard deviation is in the last column.
All attempts are ploted also in Figs. 3.18 - 3.23.

Method Attempts Mean Distance (m) Std Distance (m)

NLOPT 11 1.54 0.30

PN 40 0.85 0.51

NMPC 39 0.25 0.22

Table 3.2: Results of the simulated interception attempts.

Each dot represents one interception attempt. To gain better insight, a color map is
used to represent the miss distance, ranging from 0 meters (represented in blue) to 2 meters
(represented in red).

2https://gazebosim.org/home
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Figure 3.18: Simulation results of the nav-
igation based on NLOPT method. Color
map represents the miss distance in me-
ters.

Figure 3.19: Top view. All points exhibit high
miss distances. The navigation system is un-
able to execute interception attempts in certain
passages.

Figure 3.20: Simulation results of the PN
method. Color map represents the miss
distance in meters.

Figure 3.21: Top view. It can be observed that
the mean color of points changes in relation to
the target’s motion mode.

Based on the presented results, all the tested methods - Navigation Based on NLOPT,
PN, and NMPC - were able to conduct multiple interception attempts, with varying degrees
of success. NLOPT showed the least promising results among the three methods. It had the
lowest number of attempts and the highest mean and standard deviation of the miss distance.
This indicates a lower level of accuracy and consistency in the interception attempts. While
it was able to execute interceptions, its performance appears somewhat random rather than
systematic, making it less reliable for the task at hand.
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Figure 3.22: Simulation results of the
NMPC method. Color map represents the
miss distance in meters.

Figure 3.23: Top view. The miss distance re-
mains consistently low during all target motion
modes.

In contrast, the PN based method performed notably better than NLOPT. It managed
significantly more attempts with a considerably lower mean miss distance, showcasing a higher
degree of precision. However, its standard deviation was higher than that of NMPC, indicating
a slightly lower consistency.

The NMPC method demonstrated superior effectiveness, registering the smallest mean
and standard deviation of the miss distance. This suggests a higher level of precision and
consistency compared to the other methods. The robust performance of the NMPC algorithm
underscores its promising potential for successful application in interception tasks.

In conclusion, while NLOPT managed to conduct successful interceptions, its perfor-
mance was more sporadic than systematic, marking it as the least reliable among the methods
tested. The PN method displayed commendable performance, highlighting its capability for
interception tasks, despite having slightly less consistency than the NMPC. However, the
outstanding performance of the NMPC algorithm in terms of both precision and consistency
points to its potential as the most promising method for such tasks. The encouraging results
in the simulated environment lay a solid foundation for further exploration and validation of
these methods in real-world scenarios, with particular focus on the NMPC algorithm.

3.6.2 Real-world test

The Proportional Navigation (PN) algorithm was also tested in a real-world environ-
ment. The test involved two platforms: Eagle One3, which was manually airborned and then
controlled autonomously using the interception algorithm, and a DJI Mavic4, which was pi-
loted by humans and used as an agile target.

3https://eagle.one/cs/.
4https://www.dji.com/cz/mavic.
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Figure 3.24: Photo of the successful interception attempt by Eagle One catching DJI Mavic

The Eagle One is equipped with a net intended to catch the target drone by entangling
its rotors. The mid-flight deployment of the net is shown in Fig.3.25.

Figure 3.25: Deployment of the net on Eagle One.

The PN based trajectory planning proved to be successful in catching the drone. The
Fig.3.26 showcase the progression of a successful interception attempt (Fig.3.24).

Figure 3.26: The progression of a successful interception attempt.

After a successful interception, Eagle One has the capability to release the caught drone
and attempt another interception. Fig. 3.27 shows the net being dropped.

CTU in Prague Department of Cybernetics



3. INTERCEPTION TRAJECTORY PLANNING 37/42

Figure 3.27: Eagle One dropping the caught drone.

A video showcasing the real-world experiment can be viewed here5.

In conclusion, the success of the PN algorithm in real-world tests is a significant accom-
plishment. This achievement not only validates the effectiveness of the methods in a controlled
simulated environment, but also their applicability and robustness in real-world conditions.
It underscores the potential of these methods for effective use in practical drone interception
tasks, thus paving the way for further advancements in this field.

5https://www.youtube.com/watch?v=XCsJ5hSPWT4.
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Chapter 4

Conclusion and future work

This thesis focused on the subject of autonomous aerial interception of intruding UAVs
using a separate UAV for this operation. To address this, a novel method of detection and
tracking was extended and enhanced through an in-depth analysis of LIDAR measurement
uncertainty, capturing the flying characteristics of the intercepting drone. After confirming
its functionality, the method was further improved by implementing the Interactive Multiple
Model (IMM) filter algorithm, which demonstrated superior tracking of highly maneuver-
able targets. All the considered tracking methods were rigorously tested in simulation and
compared using various metrics, with IMM exhibiting superior performance.

For interception trajectory planning, several algorithms were employed. A custom plan-
ning method based on NLOPT served as the baseline method for comparison with new meth-
ods introduced in this thesis, namely the modification of Proportional Navigation (PN) and
planner based on Nonlinear Model Predictive Control (NMPC). PN was thoroughly analyzed,
and several in-depth observations were documented. Furthermore, the PN was adapted to
suit drone-related interceptions. Model Predictive Control was utilized with a straightforward
objective, exploiting the benefits of this type of control.

All methods were rigorously tested and compared in a simulation using multiple metrics.
Among these methods, PN and NMPC significantly outperformed the baseline algorithm
based on NLOPT, with NMPC demonstrating superior performance across all metrics.

PN was also tested in the real world cathing a human-piloted target, leading to a
successful interception. This successful transition from simulation to real-world application
represents a significant milestone, demonstrating the overall effectiveness and practicality of
the methods developed in this thesis. The accomplishment not only validates the theoretical
developments but also underscores their real-world applicability and potential for addressing
the emerging challenges of drone interception.

Future research directions include the enhancement of the IMM filter with the addition
of more models, possibly nonlinear ones, utilizing an Unscented Kalman Filter (UKF) and
taking full advantage of the drone’s dynamic properties. This advancement could significantly
improve the accuracy and efficiency of the interception process. Moreover, the automatic
tuning of filters through data-driven methods could be explored, given the challenging nature
of manual tuning observed in this work.

In terms of the NMPC approach, further experiments could be conducted with various
objectives. For instance, minimizing the time when the target drone is in occlusion under the
interceptor drone might be an interesting area to investigate. This could provide additional
insights into the optimal control of the interception process. Also, it should be possible to
incorporate obstacle avoidance, minimizing risks during interception. In addition, integration
of obstacle avoidance strategies within the NMPC framework could be considered to further
enhance the safety and reliability of drone interception.
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Furthermore, a more extensive investigation into target drone behavior could be ben-
eficial. In this work, the target drone moved along unknown yet given trajectories and was
only tested against active evasion maneuvers in real-world scenarios. Future work could entail
the implementation of more behavioral modes based on observed target behavior. This could
provide a richer understanding of interception dynamics, potentially leading to more robust
and versatile interception methods.
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